R Language Using Built In Statistical Functions Complete Guide
Understanding the Core Concepts of R Language Using Built in Statistical Functions
R Language Using Built-in Statistical Functions
Mean Calculation: mean()
- Syntax:
mean(x, trim = 0, na.rm = FALSE)
- Description: Computes the arithmetic mean of a numeric vector.
- Parameters:
x
: Numeric vector.trim
: Fraction (0 to 0.5) of observations to drop from each end ofx
before computing the mean.na.rm
: Logical value indicating whether to removeNA
values before the computation proceeds.
- Example:
data <- c(2, 4, 6, 8, 10) mean(data) # Returns 6
Summation: sum()
- Syntax:
sum(..., na.rm = FALSE)
- Description: Returns the sum of all the values present in its arguments.
- Parameters:
...
: One or more numeric arguments.na.rm
: Logical value indicating whether to removeNA
values before the computation proceeds.
- Example:
data <- c(1, 3, 5, 7, 9) sum(data) # Returns 25
Median Calculation: median()
- Syntax:
median(x, na.rm = FALSE)
- Description: Provides the median value of a numeric vector.
- Parameters:
x
: Numeric vector.na.rm
: Logical value indicating whether to removeNA
values before the computation proceeds.
- Example:
data <- c(2, 4, 6, 8, 10, 12) median(data) # Returns 7
Variance Calculation: var()
- Syntax:
var(x, y = NULL, na.rm = FALSE, use)
- Description: Calculates the variance of the input data.
- Parameters:
x
: Numeric vector.y
: An optional numeric vector of data for the second variable.na.rm
: Logical value indicating whether to removeNA
values before the computation proceeds.use
: A character string that specifies how to handle missing values.
- Example:
data <- c(1, 2, 3, 4, 5) var(data) # Returns 2
Standard Deviation: sd()
- Syntax:
sd(x, na.rm = FALSE)
- Description: Returns the standard deviation of a numeric vector.
- Parameters:
x
: Numeric vector.na.rm
: Logical value indicating whether to removeNA
values before the computation proceeds.
- Example:
data <- c(1, 2, 3, 4, 5) sd(data) # Returns 1.581139
Correlation: cor()
- Syntax:
cor(x, y = NULL, use = ..., method = ...)
- Description: Computes the correlation coefficient between two or more numeric vectors.
- Parameters:
x
: Numeric vector or matrix.y
: An optional numeric vector.use
: Indicates which pairs of values will be used to compute the correlation. Possible values are"all.obs"
,"complete.obs"
,"pairwise.complete.obs"
.method
: A character string indicating which correlation coefficient (or covariance) is to be computed. One of"pearson"
,"kendall"
, or"spearman"
.
- Example:
data1 <- c(1, 2, 3, 4, 5) data2 <- c(2, 4, 6, 8, 10) cor(data1, data2, method = "pearson") # Returns 1
Covariance: cov()
- Syntax:
cov(x, y = NULL, use = ..., method = ...)
- Description: Calculates the covariance between two numeric vectors or a matrix.
- Parameters:
x
: Numeric vector or matrix.y
: An optional numeric vector or matrix.use
: Indicates which pairs of values will be used to compute the covariance.method
: Matrix method used to compute covariances. The default is"p"
for covariance matrix.
- Example:
data1 <- c(1, 2, 3, 4, 5) data2 <- c(2, 4, 6, 8, 10) cov(data1, data2) # Returns 4
Quantiles: quantile()
- Syntax:
quantile(x, probs = seq(0, 1, 0.25), na.rm = FALSE, names = TRUE, type = 7)
- Description: Produces sample quantiles corresponding to the given probabilities.
- Parameters:
x
: Numeric vector.probs
: Numeric vector of probabilities with values in ([0,1]).na.rm
: Logical value indicating whether to removeNA
values before the computation proceeds.names
: Logical value indicating whether the result should have a names attribute.type
: An integer between 1 and 9 selecting one of nine quantile algorithms.
- Example:
data <- c(1, 2, 3, 4, 5) quantile(data, probs = c(0, 0.25, 0.5, 0.75, 1)) # Returns quantiles
Maximum and Minimum: max()
and min()
- Syntax:
max(..., na.rm = FALSE)
- Description:
max()
returns the maximum value in a numeric vector, andmin()
returns the minimum value. - Parameters:
...
: One or more numeric vectors.na.rm
: Logical value indicating whether to removeNA
values before the computation proceeds.
- Example:
data <- c(1, 2, 3, 4, 5) max(data) # Returns 5 min(data) # Returns 1
Range Calculation: range()
- Syntax:
range(..., na.rm = FALSE)
- Description: Returns a vector containing the minimum and maximum of all the given arguments.
- Parameters:
...
: One or more numeric vectors.na.rm
: Logical value indicating whether to removeNA
values before the computation proceeds.
- Example:
data <- c(1, 2, 3, 4, 5) range(data) # Returns c(1, 5)
Distribution Functions
- Normal Distribution:
dnorm(x, mean = 0, sd = 1, log = FALSE)
: Probability density function (PDF).pnorm(q, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)
: Cumulative distribution function (CDF).qnorm(p, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)
: Quantile function.rnorm(n, mean = 0, sd = 1)
: Generates random deviates.
Example of Normal Distribution Functions:
dnorm()
:x <- seq(-3, 3, by = 0.1) plot(x, dnorm(x), type = "l", main = "Normal Distribution PDF")
pnorm()
:pnorm(1.96) # Returns 0.975
qnorm()
:qnorm(0.975) # Returns 1.96
rnorm()
:set.seed(42) random_data <- rnorm(10, mean = 0, sd = 1)
Conclusion
Built-in statistical functions in R streamline data analysis, providing quick and reliable methods to calculate mean, median, variance, standard deviation, correlation, covariance, quantiles, and other statistical measures. Utilizing these functions enhances the efficiency and accuracy of your statistical computations. By delving into these functions in detail, you empower yourself with robust statistical tools to tackle complex analytical challenges with ease.
Key Takeaways:
-掌握 core statistical functions (mean()
, sum()
, etc.) for efficient data analysis.
- Utilize
cor()
andcov()
for measuring relationships between variables. - Leverage
quantile()
,max()
,min()
, andrange()
for distribution insights. - Explore
dnorm()
,pnorm()
,qnorm()
, andrnorm()
for normal distribution operations. - Always handle missing data (
NA
) appropriately using parameters likena.rm
.
Online Code run
Step-by-Step Guide: How to Implement R Language Using Built in Statistical Functions
Example 1: Calculating Mean, Median, and Mode
Step 1: Create a vector of numbers.
# Create a vector of numbers
numbers <- c(4, 8, 15, 16, 23, 42, 42)
Step 2: Calculate the mean of the numbers.
# Calculate mean
mean_value <- mean(numbers)
print(mean_value)
Step 3: Calculate the median of the numbers.
# Calculate median
median_value <- median(numbers)
print(median_value)
Step 4: Calculate the mode of the numbers. Note that R doesn't have a built-in function for mode, so we have to create it.
# Function to calculate mode
get_mode <- function(v) {
uniq_x <- unique(v)
uniq_x[which.max(tabulate(match(v, uniq_x)))]
}
# Calculate mode
mode_value <- get_mode(numbers)
print(mode_value)
Example 2: Calculating Variance and Standard Deviation
Step 1: Use the same numbers vector.
# Numbers vector from Example 1
numbers <- c(4, 8, 15, 16, 23, 42, 42)
Step 2: Calculate the variance of the numbers.
# Calculate variance
variance_value <- var(numbers)
print(variance_value)
Step 3: Calculate the standard deviation of the numbers.
# Calculate standard deviation
sd_value <- sd(numbers)
print(sd_value)
Example 3: Calculating Correlation
Step 1: Create two vectors with the same length.
# Vector 1
heights <- c(58, 59, 60, 61, 62)
# Vector 2
weights <- c(115, 117, 120, 123, 126)
Step 2: Calculate the correlation coefficient between the two vectors.
# Calculate correlation
correlation_value <- cor(heights, weights)
print(correlation_value)
Example 4: Linear Regression
Step 1: Create two vectors, one for the independent variable and one for the dependent variable.
# Independent variable (Years of Experience)
years_of_experience <- c(1, 2, 3, 4, 5)
# Dependent variable (Salary)
salary <- c(30000, 34000, 50000, 62000, 70000)
Step 2: Perform linear regression.
# Linear regression
model <- lm(salary ~ years_of_experience)
# Print the model summary
summary(model)
Step 3: Visualize the linear regression model.
Top 10 Interview Questions & Answers on R Language Using Built in Statistical Functions
1. How do you calculate the mean of a numeric vector in R?
Answer:
You can use the mean()
function to calculate the mean of a numeric vector in R.
# Example
data <- c(4, 7, 10, 14, 19)
mean_value <- mean(data)
mean_value
# Output: 10.8
2. How can you find the median of a numeric vector?
Answer:
The median()
function is used to find the median value in R.
# Example
data <- c(4, 7, 10, 14, 19, 23)
median_value <- median(data)
median_value
# Output: 12
3. How do you calculate the standard deviation of a numeric vector?
Answer:
The sd()
function in R computes the standard deviation of a numeric vector.
# Example
data <- c(4, 7, 10, 14, 19)
standard_deviation <- sd(data)
standard_deviation
# Output: 6.403124
4. How can you compute the variance of a numeric vector?
Answer:
Use the var()
function to calculate the variance of a numeric vector.
# Example
data <- c(4, 7, 10, 14, 19)
variance_value <- var(data)
variance_value
# Output: 41
5. How do you determine the correlation between two numeric vectors?
Answer:
To find the correlation between two numeric vectors, use the cor()
function.
# Example
x <- c(4, 7, 10, 14, 19)
y <- c(2, 6, 8, 15, 18)
correlation_value <- cor(x, y)
correlation_value
# Output: 0.9831094
6. How can you perform a t-test in R?
Answer:
Use the t.test()
function to perform a t-test. This can be used to compare the means of two groups.
# Example: Independent two-sample t-test
group1 <- c(4, 7, 10, 14, 19)
group2 <- c(1, 3, 5, 10, 12)
t_test_result <- t.test(group1, group2)
t_test_result
# Output includes t statistic, degrees of freedom, p-value, and confidence interval.
7. How do you calculate the summary statistics (mean, min, max, quartiles) for a numeric vector?
Answer:
The summary()
function provides summary statistics for a numeric vector.
# Example
data <- c(4, 7, 10, 14, 19)
summary(data)
# Output provides Min., 1st Qu., Median, Mean, 3rd Qu., Max.
8. How can you obtain the quantiles of a numeric vector?
Answer:
Use the quantile()
function to get specific quantiles of a numeric vector.
# Example: Find the 25th, 50th, and 75th percentiles
data <- c(4, 7, 10, 14, 19)
quantiles <- quantile(data, probs = c(0.25, 0.5, 0.75))
quantiles
# Output provides quantiles: 25th, 50th, 75th percentiles
9. How do you compute the cumulative distribution function (CDF) using built-in functions?
Answer:
For standard distributions, use functions like pnorm()
, pt()
, pf()
, etc. For example, pnorm()
computes the CDF for the normal distribution.
# Example: CDF of the standard normal distribution at x = 1.96
cdf_value <- pnorm(1.96)
cdf_value
# Output: 0.9750021 (close to 97.5%)
10. How can you perform a linear regression analysis in R?
Answer:
The lm()
function is used to fit a linear model.
Login to post a comment.